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Abstract 

Under item response theory (IRT), obtaining a common proficiency scale is required in 

many applications. Four IRT linking methods, including the mean/mean, mean/sigma, Haebara, 

and Stocking-Lord methods, have been developed and widely used to estimate linking 

coefficients (slope and intercept) for a linear transformation from one scale to another. These 

four methods have typically been used for dichotomous IRT models but can also be extended to 

polytomous IRT models. This paper further extends the four linking methods to a mixture of 

unidimensional IRT models for mixed-format tests. The development in the present study is 

intended to be as general as possible so that each linking method can be applied to mixed-format 

tests using any mixture of the following five IRT models: the three-parameter logistic model, the 

graded response model, the generalized partial credit model, the nominal response model, and 

the multiple-choice model.  

A simulation study is conducted to investigate the performance of the four linking 

methods extended to mixed-format tests. Overall, the Haebara and Stocking-Lord methods yield 

more accurate linking results than the mean/mean and mean/sigma methods. The simultaneous 

linking using all items with different formats is compared to the linking through items of a 

“dominant” item format. When the nominal response model or the multiple-choice model is used 

to analyze data from mixed-format tests, limitations of the mean/mean, mean/sigma, and 

Stocking-Lord methods are described. 
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IRT Scale Linking Methods for Mixed-Format Tests1 
 

Introduction 

A test containing a mixture of different item formats is often used in both classroom and 

large-scale assessments. In the present study, such a test is referred to as a mixed-format test. 

Combinations of different item formats often allow for the measurement of a broader set of skills 

than the use of a single format. The formats of items in a mixed-format test are usually 

categorized into two classes: multiple-choice (MC) and constructed-response (CR). Typically, 

MC items are dichotomously scored (DS) and CR items are polytomously scored (PS).  

The use of item response theory (IRT) in testing applications has grown considerably 

over the last few decades. Some of the IRT models that have been thoroughly developed and 

used in practical testing programs include the three-parameter logistic (3PL) model (Birnbaum, 

1968), the graded response (GR) model (Samejima, 1969, 1972), the nominal response (NR) 

model (Bock, 1972), the generalized partial credit (GPC) model (Muraki, 1992), and the 

multiple-choice (MC) model (Thissen & Steinberg, 1984). In practice, these models are 

applicable to various formats of items on a mixed-format test. 

In IRT, the scale for measuring proficiency (as a construct) is determined up to an 

arbitrary linear transformation. Typically, this indeterminacy is solved in such a way that the 

mean and standard deviation of proficiency parameters are arbitrarily fixed to 0 and 1 (“0, 1” 

scale) for the group of examinees at hand. This implies that if two “0, 1” scales are obtained 

separately from different groups, then the two “0, 1” scales may be nonequivalent. Thus, to 

obtain a common scale, one scale should be linked to the other. In this case, the item and 

proficiency parameters on one scale are transformed to the other by a linear function relating the 

two scales, a process referred to here as scale linking. Note that the linear transformation in scale 

linking is made possible by the invariance property of IRT modeling (Lord, 1980). In practice, 

                                                 
1 A previous version of the paper was presented at the Annual Meeting of the National Council on Measurement in 
Education, April 2004, San Diego, CA. 
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linking coefficients (slope and intercept) of the linear function are estimated through appropriate 

scale linking methods. 

Several linking methods, which attempt to minimize linking error, have been developed 

under dichotomous IRT models. The linking methods include the mean/mean (Loyd & Hoover, 

1980), mean/sigma (Marco, 1977), Haebara (Haebara, 1980), Stocking-Lord (Stocking & Lord, 

1983), and minimum chi-square (Divgi, 1985) methods. These methods have also been extended 

to polytomous IRT models (Baker, 1992, 1993, 1997; Cohen & Kim, 1998; Kim & Cohen, 1995; 

Kim & Hanson, 2000, 2002). Recently, Ogasawara (2001) proposed the least squares methods 

for dichotomous IRT models and provided their asymptotic standard errors of linking 

coefficients. Kim and Song (2004) extended the least squares methods to the GR model. 

Compared to other research areas, such as scoring and weighting, little research has been 

conducted on scale linking for mixed-format tests. Li, Lissitz, and Yang (1999) presented an 

extended version of the Stocking-Lord linking method for mixed-format tests consisting of DS 

and PS items, for which the 3PL and GPC models, respectively, were used. Tate (2000) 

described extended versions of the mean/sigma and Stocking-Lord linking methods for mixed-

format tests with MC and CR items. In the study by Tate (2000), a dichotomous IRT model was 

assumed for the MC items and a modification of the GR model (see Tate, 1999) was applied to 

the CR items judged by raters with polytomous responses.  

However, no study has been conducted on linking scales from mixed-format tests that 

require three or more unidimensional IRT models. (This case probably will be rare in real testing 

programs.) In this regard, the present paper presents a general framework for linking mixed-

format tests that require more than two different unidimensional IRT models. In brief, the main 

purposes of the present study are: (1) to formally present four “traditional” linking methods 

including the mean/mean, mean/sigma, Haebara, and Stocking-Lord methods extended to mixed-

format tests, and (2) to investigate the performance of each linking method under several 

simulation conditions. 
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Scale Linking Under a Mixture of IRT Models 

It has been reported that some large-scale operational mixed-format tests are nearly 

unidimensional with respect to the constructs they measure, but others are not. Among examples 

of the former are the College Board’s Advanced Placement computer science and chemistry 

examinations (Bennett, Rock, & Wang, 1991; Thissen, Wainer, & Wang, 1994) and the 

Wisconsin Student Assessment System mathematics and reading tests (Swygert, McLeod, & 

Thissen, 2001). Through a literature review for studies on the construct equivalence of MC and 

CR items, Traub (1993) concluded that the two types of items appear to measure different 

constructs for the writing domain, but not for the reading comprehension and quantitative 

domains. 

When the constructs measured by different formats of items are claimed to be almost 

identical, unidimensional IRT models can be used to analyze the different item formats. For 

example, MC and CR items can be analyzed using the 3PL and GPC models, respectively. The 

item parameters for a mixed-format test can be estimated separately by format or simultaneously 

across formats. Separate calibration by format (“format-wise” calibration) could also be used in a 

multidimensional situation, where different formats of items appear to measure substantially 

different constructs. Simultaneous calibration not only provides IRT’s answer to solving the 

problem of weight selection for each format in a statistically optimal way (Wainer & Thissen, 

1993), but also provides a basis for calculating IRT scale scores based on patterns of summed 

scores (Rosa, Swygert, Nelson, & Thissen, 2001). It can be said that simultaneous calibration is 

more justifiable than format-wise calibration because different formats of items are not only 

calibrated at the same time but also placed on the same metric. 

IRT Models for Subtests of a Mixed-Format Test 

The probabilistic expression for each of the five IRT models (3PL, GR, GPC, NR, and 

MC) is briefly described for further discussion. The probability of a randomly selected examinee 

 with proficiency i iθ  getting a score at category k  of item j  with  categories is symbolized jK
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by  or ijkP )( ijkP θ , which is called a category response function or a category characteristic 

curve. 

j

ijk

j

jijKPijKP ~=

Three-parameter logistic model.  Under the 3PL model (Birnbaum, 1968), the probability 

that a randomly selected examinee  with proficiency i iθ  answers item j  correctly is defined as 

 
exp[ ( )]

( ) ( | , , ) (1 )
1 exp[ ( )]

j i j
ij j i i j j j j j

j i j

Da b
P P P a b c c c

Da b
θ

θ θ
θ
−

= = = + −
+ −

, (1) 

where  is a discrimination parameter, b  is a difficulty parameter, c  is a lower asymptote, 

and D is a scaling constant (typically 1.7). 
ja j j

Graded response model.  The GR model is appropriate to model PS items with ordered 

response categories such as in a Likert scale (Baker, 1992). Consider the logistic form in the 

homogeneous case of the model (Samejima, 1969, 1972), in which an item discrimination 

parameter is constant across all categories. Let Pijk
~  denote the cumulative probability that a 

randomly selected examinee i  with proficiency iθ  earns a score at or above category k  of 

item . Formally, the Pijk
~  for category  of item k j  with  categories, given jK iθ , can be 

expressed as 

 

1 1
exp[ ( )]

( ) ( | , ) 2
1 exp[ ( )]

0

j i jk
jk i i j jk j

j i jk

j

k
Da b

P P P a b k K
Da b

k K

θ
θ θ

θ

 =


−= = = ≤ ≤ + −
 >

, (2) 

where  is a discrimination parameter, b  are difficulty or location parameters for categories 2 

through , and D is a scaling constant (typically 1.7). Note that the first category does not have 

a difficulty parameter. Now, the category response function, P , is given by the difference 

between two adjacent cumulative probabilities as follows: 

ja

K

jk

ijk

 ( 1)( )ijk jk i ijk ij kP P P Pθ += = − . (3) 

Note in Equation 3 that if a category  is equal to 1, k 21
~1 ijij PP −=  and if a category  is equal to 

, 

k

jK
j

. 
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Generalized partial credit model.  As for the GR model, the GPC model (Muraki, 1992) 

is appropriate for the analysis of responses that are successively ordered on a rating scale. The 

model states that the probability, , is given by ijkP

 1
1

1 1

exp ( )
( ) ( | , , , , , )

exp ( )
j j

k

j i jv
v

ijk jk i i j j jk jK K h

j i jv
h v

Da b
P P P a b b b

Da b

θ
θ θ

θ

=

= =

 −  = = =
 −  

∑

∑ ∑
, (4) 

where  is a discrimination parameter, b  is an item-category parameter, and D is a scaling 

constant (typically 1.7). Note that b  is arbitrarily defined as 0. This value is not a location 

constant and could be any value because the term including this parameter is canceled from the 

numerator and denominator of the model (Muraki, 1992). 

ja jk

1j

Nominal response model.  Bock’s (1972) NR model can be used to model PS items 

whose categories are not necessarily ordered. For the NR model, the probability, P , is 

expressed as 

ijk

 1 1

1

exp( )
( ) ( | , , , , , )

exp( )j j j

jk i jk
ijk jk i i j jK j jK K

jh i jhh

a c
P P P a a c c

a c

θ
θ θ

θ
=

+
= = =

+∑
. (5) 

Since Equation 5 is invariant with respect to translation of the term a jk i jkcθ +  in both the 

numerator and denominator, sometimes two constraints are imposed for model identification: 

 
1

0
jK

jk
k

a
=

=∑  and 
1

0
jK

jk
k

c
=

=∑ . (6) 

Multiple-choice model.  Thissen and Steinberg’s (1984) MC model can be viewed as an 

extended version of the NR model. The NR model has been widely used in choice/preference 

data. However, it might not be appropriate for multiple-choice items because as the latent 

proficiency approaches negative infinity, there will be one response for which the response 

function approaches one and the response functions associated with all other responses will 

approach zero. This is not consistent with the possibility that examinees with low proficiencies 
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could choose any of the responses by guessing (Kim & Hanson, 2002). As an alternative 

approach to this limitation of the NR model, the probability P  under the MC model is 

expressed as 

ijk

 0
0 0

0

exp[ ] exp[ ]
( ) ( | , , , , , , )

exp[ ]
j j j

jk i jk jk j i j
ijk jk i i j jK j jK jk K

jh i jh
h

a c d a c
P P P a a c c d

a c

0θ θ
θ θ

θ
=

+ + +
= = =

+∑
, (7) 

where  and 0ja 0jc  are parameters for the “0” or “Don’t Know” latent category of item j . As in 

the NR model, the parameters jka  and jkc  are not identified with respect to location, so most 

often the following constraints are imposed on those parameters for model identification: 

 
0

0
jK

jk
k

a
=

=∑  and 
0

0
jK

jk
k

c
=

=∑ . (8) 

The parameters represented by jkd  are proportions, representing the proportion of those who 

don’t know that respond in each category on a multiple-choice item. Therefore, the constraint 

1
1

jK

jk
k

d
=

=∑  

is required (Thissen & Steinberg, 1997). 

Dichotomous IRT Models Revisited 

It is helpful to view dichotomous IRT models—e.g., the 3PL model—from the 

perspective of polytomous IRT models to deal with both types of IRT models consistently in 

mixed-format tests. Dichotomous IRT models actually have two response categories—incorrect 

and correct. With the notation used in Equation 1, the probability for the incorrect response 

category is symbolized as 1 . However, in this study for the purpose of generalization in line 

with polytomous IRT models, the incorrect response category is regarded as the first category 

and the correct response category as the second category. Therefore, for item 

ijP−

j , the probability 

for the incorrect response category can be symbolized as P  and the probability for the correct 1ij
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response category as P . Note that the first category does not have a difficulty parameter (as 

with the GR model) and the difficulty parameter for the correct response category of item 

2ij

j  can 

be symbolized as . 2jb

The Nature of Scale Linking Through Common Items 

Consider a situation in which item parameters for a given set of items from a mixed-

format test, all intended to measure a single proficiency, are independently estimated using item 

response data obtained from two groups of examinees, old and new. Suppose that the two 

separate calibrations use their respective “0, 1” scales to remove scale indeterminacy. The two 

“0, 1” scales are group dependent and are not expected to be equivalent unless the proficiency 

distributions for the two groups have the same mean and standard deviation. Denote the two “0, 

1” scales from the old and new groups as Oθ  (old scale) and Nθ  (new scale), respectively. For 

the two “0, 1” scales to be compared and used interchangeably, they should be placed on a 

common scale. Although the common scale can be arbitrarily defined, usually one of the two 

“0, 1” scales is used as the common scale; in this study, the old scale is assumed to be the 

common scale.  

Although the two “0, 1” scales, Oθ  and Nθ , are group dependent, they should be linearly 

related because of the invariance property of IRT modeling (Lord, 1980)—as long as the model 

and assumptions hold—in such a way that  

 BA NO += θθ . (9) 

The slope A and intercept B of the linear function (or, linear transformation) are often referred to 

as (scale) linking coefficients. Given the relation BA NO += θθ , the item parameters from 

separate calibrations should be also linearly related as follows. Under the 3PL, GR, and GPC 

models (see, e.g., Baker, 1992; Lord, 1980), 

 Aaa jNjO /=  (10) 

and 
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 BbAb jkNjkO += , (11) 

where  and   are item parameters for category k  of item jOa jkOb j  expressed on the old scale Oθ , 

and  and  are those on the new scale jNa jkNb Nθ . Under the NR and MC models (see, e.g., Baker, 

1993; Kim & Hanson, 2000, 2002),  

 Aaa jkNjkO /=  (12) 

and 

 ( / ) jkO jkN jkNc c B A c= − . (13) 

The parameters, c  under the 3PL model and d  under the MC model, do not depend on the 

latent proficiency and thus are not affected by the linear transformation. Thus, 

j jk

 jNjO cc =  (14) 

and 

 jkNjkO dd = . (15) 

However, Equations 10 through 15 typically do not hold for estimated item parameters because 

of sampling error and possible model misfit. This implies that with sample data, linking 

coefficients A and B should be properly estimated so as to minimize linking error. Scale linking 

methods provide solutions to this kind of estimation. 

This paper focuses on the four linking methods applicable to mixed-format tests: 

mean/mean, mean/sigma, Haebara, and Stocking-Lord methods. The mean/mean and 

mean/sigma methods are often called the moment methods, and the Haebara and Stocking-Lord 

methods are referred to as the characteristic curve methods (see Kolen & Brennan, 1995). The 

four methods have been widely used due to their simplicity (for the moment methods) or 

superiority (for the characteristic curve methods). It has been reported that the characteristic 

curve methods produce more stable results than the moment methods (Baker & Al-Karni, 1991; 

Hanson & Béguin, 2002; Kim & Cohen, 1992; Ogasawara, 2001). 
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To discuss the scale linking for mixed-format tests, the next sections assume that the 

constructs measured by different formats of items are similar enough that some or all of the five 

unidimensional IRT models just described can be used together to analyze response data from 

mixed-format tests. For ease of further discussion, it is also assumed that M different 

unidimensional IRT models are used to analyze item response data from a mixed-format test. 

The  ( ) single-format set of items (or, model) has J  items, and the mixed-

format test has a total of  items. That is, 

thm Mm ,,2,1= m

n ∑ =
=

M

m mJn
1

. 

Moment Methods: Mean/Mean and Mean/Sigma Methods 

The moment methods attempt to find the appropriate slope and intercept of the new-to-

old transformation by expressing Equations 10 through 13 in terms of a group of items. A 

problem in doing so is that Equation 11 under the 3PL, GR, and GPC models does not agree in 

form with Equation 13 under the NR and MC models. The following reparameterization, as was 

done in Kim and Hanson (2000), is adopted to solve the problem: 

 jk i jka cθ +  = ( )jk i jka bθ − , (16) 

where /jk jk a= − jkb c . Equation 13, then, can be re-expressed in terms of jkb  as 

 jkO jkNb Ab B= + . (17) 

Notice that Equation 17 is identical in form to Equation 11.  

Let  and  be the operators for the two descriptive statistics, mean and 

standard deviation. Taking the mean over a-parameters based on Equations 10 and 12 and then 

expressing the resulting relationship with respect to A, 

)( ⋅M )( ⋅SD

 )(/)( ON aMaMA = , (18) 

where  represents all the discrimination parameters, a  or  [ ; 

; ] on the new scale; and a  is the counterpart on the old scale. 

Note that the notation (m) in the subscripts is used to indicate that item 

Na

,,2

)(mjN )(mjkNa mJj ,,2,1=

)(,1 mjKk = Mm ,,2,1= O

j  is nested in the m  th
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model. Taking the mean and standard deviation over b-parameters based on Equations 11 and 17 

and then expressing the resulting relationships with respect to A and B, 

 ( ) / ( )OA SD b SD bN=  (19) 

and 

 ( ) ( )O NB M b A M b= − ⋅ , (20) 

where b  represents all the b-parameters (including both original and reparameterized ones) on 

the new scale, except nonexistent and arbitrary ones such as 

N

1j Nb  under the 3PL, GR, and GPC 

models. A similar representation is applied to b , based on the old scale. Note that Equation 20 

assumes that A has been evaluated. 

O

Mean/mean method.  From Equations 18 and 20, with sample data, linking coefficient 

estimates in the mean/mean method are obtained by 

  (21) )ˆ(/)ˆ(ˆ
ONMM aMaMA =

and 

  ˆ ˆˆ ( ) ( )ˆ
MM O MM NB M b A M b= − . (22) 

Note that item parameters are replaced with their estimates. 

Mean/sigma method.  From Equations 19 and 20, the mean/sigma method estimates 

linking coefficients by 

 ˆˆ ( ) / ( )ˆ
MS OA SD b SD b= N

ˆ )

 (23) 

and 

 ˆ ˆˆ ( ) (MS O MS NB M b A M b= − . (24) 

Several issues need to be discussed in regard to the moment methods extended to mixed-

format tests. First, the moment methods presented above do not specify whether the scaling 

constant, D , should be used consistently across the models; nor do they specify whether any 
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weight should be given to the estimates of a  or jk jkb . The reparameterization, ( )jk i jkba θ − , for 

the NR and MC models could possibly be replaced with ** ( )jk i jkDa bθ − , where a , and 

thus a  could be replaced with a . Furthermore, compared to the estimates of a  for the NR 

and MC models, the estimate of a  for item 

Da jkjk /** =

jkjk
**

jk

j j  with  categories from, for example, the GR 

model, could be given some weight, for example, 

j

1

K

−jK . Although these considerations are 

reasonable, they are not reflected in developing the moment methods.  

) ˆ( OaMN

jk jc−

jk ˆˆ jkc

Second, consider a situation in which the NR and/or MC models are employed for mixed-

format tests and the constraints shown in Equations 6 and 8 are imposed for model identification. 

In this case, the sum of -parameter estimates from the new group and the counterpart from the 

old group both equal zero and thus do not contribute to the calculation of  and  in 

the mean/mean method.  

Na

ˆ(aM )

Third, in the above situation, estimated values of the b  (= /k ja ) reparameterized for 

the NR and MC models might be unstable though the reparameterization is theoretically 

legitimate. The instability can increase when both a  and  are near zero and thus the 

resulting ˆ
jkb  can be numerically unstable in magnitude and sign. This instability could 

negatively affect the estimation of the linking coefficients in both the mean/mean and 

mean/sigma methods. Indeed, Kim and Hanson (2002) pointed out that, as a result of such 

instability, the mean/mean and mean/sigma methods presented by Kim and Hanson (2000) are 

not feasible for the MC model. 

k

Characteristic Curve Methods: Haebara and Stocking-Lord Methods 

To develop the characteristic curve methods, each of item category characteristic curves 

or a test characteristic curve on the new scale is intended to be transformed and matched with the 

counterpart on the old scale, and vice versa. This transformation requires item parameter 

estimates on one scale to be expressed as those transformed to the other, while two ways of 

transformation—new-to-old and old-to-new—are conducted. The new-to-old and old-to-new 
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transformations vary by IRT model. Under the 3PL, GR, and GPC models, from Equations 10 

and 11, item parameter estimates on the new scale are transformed to the old scale by 

Aaa jNjN /ˆˆ* =  and , BbAb jkNjkN += ˆˆ*

and item parameter estimates on the old scale are transformed to the new scale by 

jOjO aAa ˆˆ # =  and b . ABb jkOjkO /)ˆ(ˆ # −=

Under the NR and MC models, from Equations 12 and 13, the new-to-old transformation is 

conducted by 

Aaa jkNjkN /ˆˆ* =  and *ˆ ˆ ˆ( / ) jkN jkN jkNB A a= −c c , 

and the old-to-new transformation is conducted by 

jkOjkO aAa ˆˆ # =  and #ˆ ˆ ˆjkO jkO jkOc c Ba= + . 

The estimates of the parameters jc (under the 3PL model) and jk

jN
* =

jO

d  (under the MC model) are not 

converted and remain the same on both scales. For example, c  and  in the case 

of the 3PL model. Here, c  is not necessarily equal to c  because of sampling error and 

possible model misfit. 

jNĉˆ

ˆ

jOjO cc ˆˆ # =

jNˆ

For ease of further discussion, the estimated and transformed category characteristic 

functions for category k  of item j  are symbolized as follows: P  and  for the 

old scale 

)(ˆ
OjkO θ )(ˆ *

OjkNP θ

Oθ , and  and  for the new scale )(ˆ
jkNP Nθ )(ˆ

NP θ#
jkO Nθ . Specifically, for example, under 

the GR model the four functions (i.e., probabilities) are expressed as 

)ˆ,ˆ,ˆ|()(ˆ
)1( OkjjkOjOOOjkO bbaPP += θθ , , )ˆ,ˆ,ˆ|()(ˆ *

)1(
***

NkjjkNjNOOjkN bbaPP += θθ

)ˆ,ˆ,ˆ|()(ˆ
)1( NkjjkNjNNNjkN bbaPP += θθ , and . )ˆ,ˆ,ˆ|()(ˆ #

)1(
###

OkjjkOjONNjkO bbaPP += θθ

Haebara method.  For the Haebara method, the linking coefficients are obtained by 

minimizing the following criterion function, Q, 

 Q = Q1 + Q2, (25) 

where 
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( ) 2*

1 ( ) ( )
1 1 1

1 ˆ ˆQ  ( ) ( ) ( )
j mm KJM

jkO m O jkN m O O O
m j k

P P
L 1 dθ θ ψ θ θ

+∞

= = =−∞

 = − ∑∑ ∑∫  (25a) 

and 

 
( ) 2#

2 ( ) ( )
1 1 1

1 ˆ ˆQ  ( ) ( ) ( )
j mm KJM

2jkN m N jkO m N N N
m j k

P P
L

dθ θ ψ θ θ
+∞

= = =−∞

 = − ∑∑ ∑∫ , (25b) 

where 

)(1 Oθψ  is a continuous distribution of Oθ , 

)(2 Nθψ  is a continuous distribution of Nθ , 

M is the number of models,  

mJ  is the number of items nested in the m  model,  th

)(mjK  is the number of categories of item j  under the  model, thm

)()( θmjkP  is a more specific expression of )(θjkP  to indicate that the probability is 

defined under the m  model, and th

∑∑
= =

=
M

m

J

j
mj

m

KL
1 1

)( . 

Note that parentheses around the subscript m are used to indicate that item j  is nested in the  

model. The quantity 

thm

L  is a factor to standardize the criterion function. Since it is not supposed to 

affect the solutions of the slope and intercept, L  can be ignored. 

Note in Equation 25 that a dichotomous IRT model is characterized as a special case of a 

polytomous IRT model having two categories. Thus, the incorrect response categories for the 

dichotomous IRT model also are used in defining the criterion function. If only the dichotomous 

IRT model is involved in calculating the criterion function, Q, it can be shown that the criterion 

function simplifies to the function suggested by Haebara (1980), in which only the correct 

response categories are taken into account. 

To implement the Haebara method in practice requires a procedure to perform the 

integration in Equation 25. One possibility is a form of numerical integration that approximates 

Q. A practical form of Q, thus, is 
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where iOθ  ( i ) and WOG,,2,1= )(1 iOθ are proficiency points and weights intended to reflect the 

distribution of Oθ ; iNθ  ( ) and WNG,,i 2,1= )(2 iNθ  are proficiency points and weights for Nθ ; 
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Notice that the two factors of standardization, L  and , are more generally defined in 

Equations 26a and 26b. Because the criterion function  is non-linear with respect to A and B, 

a computationally intensive multivariate search technique (e.g., Dennis & Schnabel, 1996) is 

required to solve for A and B minimizing Q . 

1 2L
*Q

*

Stocking-Lord method.  By convention, the criterion function for the Stocking-Lord 

method has been defined to be non-symmetric so that only the target scale (i.e., Oθ  in the case of 

the new-to-old transformation) is taken into account. However, it may be desirable that the 

transformed scale (i.e., Nθ  in the case of the new-to-old transformation) also be taken into 

account to define the criterion function. A general version of the Stocking-Lord method chooses 

A and B to minimize the following criterion function, F,  

 F = F1 + F2, (27) 

where 
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1
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and 
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In Equations 27a and 27b, the estimated test characteristic functions are defined as 
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where U  is a weight allocated to the response category k  of item )(mjk j  under the  model. 

The weight U  is called a scoring function and it is usually defined in such a way that 

 or U . Note that the models involved in the criterion function, F, should be 

confined to the models under which the test characteristic curve is properly defined. Under the 

NR and MC models, the test characteristic function typically is not defined due to the lack of the 

definition of a true score. 

thm

jk

1−k=U jk kjk =

A practical approximation of F is 
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where , and L . The criterion function F  is also non-linear with 

respect to A and B, and thus a multivariate search technique is required to solve for A and B 

minimizing . 
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Simulation Study 

A simulation study was conducted to compare the four linking methods for mixed-format 

tests. The mixed-format test selected was assumed to consist of DS items for which the 3PL 

model was appropriate for item analysis and PS items for which the GPC model was appropriate 

for item analysis. The types of items for the GPC model may include essay, passage-based, and 

rating-scale types. The present study, for generality, does not specify the type of PS items but 

assumes that they have characteristics of ordered or, possibly, semi-ordered responses. Although 

separate calibration by format (i.e., format-wise calibration) could have been used for test 

calibration, simultaneous calibration across formats was employed to estimate item parameters 

on the mixed-format test. 

The linking scenario was that only one mixed-format test form was administered 

independently to two different groups, old and new. This means that all items in the test form 

were used as common items to link two “0, 1” scales from the two groups. The new-to-old 

transformation was considered, and item parameter estimates on the new scale were transformed 

to the old scale. The test form administered to the old group is called the “old” form and the 

same form administered to the new group is called the “new” form. 

The criterion functions for the characteristic curve methods were defined as follows. The 

Haebara and Stocking-Lord methods used “symmetric” criterion functions that consider both of 

the old and new scales. Specifically, both Q  and Q  in Equation 26 were used to define the 

Haebara criterion function, and both F  and F  in Equation 28 were used to define the Stocking-

Lord criterion function. For the summation scheme for the symmetric criterion functions, the 

proficiency distributions of the old and new groups were taken to be normal, although different 

distributions could have been used for the two groups. For the two distributions, 100 equally 

spaced proficiency points were chosen with the range of -4 to 4. At each point, the density of the 

standard normal distribution was found since the “0, 1” scale was used for each of the old and 

*
1

*
2

*
2

*
1
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new forms. Each density was then divided by the sum of all the densities to standardize the 

densities, and the standardized densities served as the 100 weights. 

Factors Investigated 

Five factors were considered for the simulation study. The combination of the five factors 

led to 72 conditions [2 (levels of nonequivalence) × 2 (sample sizes) × 3 (types of mixed-format 

test) × 3 (types of linking) × 2 (computer programs)], under each of which the four linking 

methods for mixed-format tests were compared. 

Equivalent versus nonequivalent groups linking.  The need for obtaining a common scale 

typically occurs when the two distributions of proficiency for the old and new groups differ. Two 

linking situations were considered: (1) linking with equivalent groups and (2) linking with 

nonequivalent groups. The difference in proficiency between the new and old groups can be 

expressed as a new-to-old linear transformation, , where  is equivalent to BA NN += θθ * *
Nθ Oθ . 

If A = 1 and B = 0, the two groups are equivalent. For the nonequivalent groups linking,  

A = 1 and B = 1 were chosen, as was done in Hanson and Béguin (2002). In both equivalent and 

nonequivalent groups linking situations, the four linking methods were conducted. In the 

equivalent groups linking, no scale linking (hereafter, “no scaling” method) was also considered 

in addition to the four linking methods, since when the two groups are assumed to be equivalent 

one may assume A = 1 and B = 0 without performing any scale transformation.  

Let ),( σµN  be a normal distribution with mean µ  and standard deviation σ . To 

simulate the conditions of equivalent and nonequivalent groups linking, examinees for the old 

group were generated by randomly sampling proficiency values from a N (0, 1). Then, for the 

equivalent groups linking, examinees for the new group were generated by randomly sampling 

proficiency values from a N (0, 1). For the nonequivalent groups linking, proficiency values 

were generated from a (1, 1) for the new group. N
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Sample size.  Two sample sizes were considered: (1) 500 examinees per form and  

(2) 3,000 examinees per form. For each set of the simulated item responses, 500 and 3,000 

proficiency values were generated with the random seed being changed. 

Types of mixed-format test.  Three types of mixed-format test were used in terms of the 

number of DS and PS items: (1) 10 DS items and 10 PS items, (2) 20 DS items and 5 PS items, 

and (3) 30 DS items and 2 PS items. (All PS items were assumed to have five response 

categories.) The three test types are referred to, respectively, as 10/10, 20/5, and 30/2. The item 

parameters for the three types that were used for simulations are presented in Table 1. Note that 

the first 10 and 20 DS items on the 30/2 type were used for the 10/10 and 20/5 types, 

respectively. Similarly, the first 2 and 5 PS items on the 10/10 type were used for the 30/2 and 

20/5 types, respectively. Therefore, the three types had 10 DS items and 2 PS items in common. 

When a set of anchor items comprises several item formats in a mixed-format test, it can 

be useful to know which item type dominates the available formats because scale linking is often 

accomplished with only a single format (e.g., with DS items only) when the test is 

unidimensional. In the context of scale linking, a dominant item type is defined in this paper as 

the one that has more information to estimate the slope and intercept than any other. The amount 

of information available for an item type depends on the number of response categories. For 

example, the PS items are considered dominant for the 10/10 type, while the DS items are 

dominant for the 30/2 type.  

For the 20/5 type, the decision depends on the linking method being used. Considering 

the slope and intercept separately, the DS items are dominant for the mean/mean method, and 

either the DS or PS items can be a dominant type for the mean/sigma method. Considering the 

number of response categories over items, on the other hand, the PS items can be viewed as the 

dominant type for the characteristic curve methods because 5 five-category PS items have a total 

of 25 response categories, whereas 20 DS items have a total of 20.  

The decision on the dominant type, however, also should take into account the overall 

stability of item parameter estimates for the type. Therefore, a more sophisticated definition of 
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dominant item type should include both the number of response categories and the stability of 

item parameter estimates. 

Types of linking through different anchor item sets.  To estimate linking coefficients of 

the new-to-old transformation, all or some of the common items can be used as actual anchor 

items. Although anchor items can be selected in various ways, the following three sets of anchor 

items were considered for each type of mixed-format test: (1) both DS and PS items, (2) DS 

items only, and (3) PS items only. In each set, all items of a single type were used as anchor 

items. The three sets of anchor items led to the following three types of linking: (1) simultaneous 

linking, (2) linking through DS items only, and (3) linking through PS items only. When two 

alternate mixed-format test forms have both DS and PS items in common, simultaneous linking 

can be viewed as ideal because both DS and PS items better represent their total test in content 

and characteristics. However, linking through DS items only is often chosen for practical reasons 

such as concerns about PS items in terms of reliability, security, and rater drift. Linking through 

PS items only was considered for comparative purposes, although its practical use would be rare. 

Linking coefficients from each of the three types of linking were used to transform the item 

parameter estimates for both DS and PS items from the new scale to the old scale. 

Computer programs for calibration (MULTILOG versus PARSCALE).  Two computer 

programs—MULTILOG (Thissen, 1991) and PARSCALE (Muraki & Bock, 1997)—were used 

for test calibration. By default, both computer programs determine the proficiency scale by 

setting the mean and standard deviation of the proficiency distribution used in the marginal 

maximum likelihood estimation at 0 and 1, respectively. MULTILOG handles the GPC model as 

a constrained version of the NR model by defining transformation matrices (specifically, triangle 

T-matrices) to fit the GPC model (see Appendix A). In addition, the item parameter estimates 

from MULTILOG must be transformed so they can be treated as parameter estimates from the 

GPC model. Specifically, for item j , the first-order contrast coefficient for A  and the 

contrast coefficients for C  from MULTILOG need to be transformed into the corresponding 

item parameter estimates (  and b  from PARSCALE according to the following relationships: 

)(K

)(K

a )k
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D
KAa )(

=  and 
)(
)(

KA
KCbk = , 

where D is a scaling constant. These transformations are practical. Childs and Chen (1999) 

described more technically the relationships between the estimates from MULTILOG and 

PARSCALE on the basis of the T matrices in MULTILOG. 

Data Generation 

True item parameters by model.  For each of the three test types, 10/10, 20/5, and 30/2, 

the population item parameters for the 3PL model associated with the DS items and the GPC 

model associated with the PS items were generated as follows. The slope, difficulty, and lower 

asymptote parameters, a, b, and c, for the 3PL model were generated such that a , 

, and c , where 

)2.0,0(~ LN

)1,0(~ Nb )32,8(~ BETA ),( σµLN  designates a log normal distribution with 

mean µ  and standard deviation σ , and ),( βαBETA  a beta distribution with two parameters α  

and β . The item discrimination parameters, a , for the GPC model were generated from the 

same log normal distribution as for the 3PL model. Since all PS items had 5 response categories, 

four item-category parameters for each PS item were sampled from )2.0,5.1(−N , , 

, and N , and assigned to categories 2 through 5 in order. Because of the 

locations and scales for the four normal distributions, the four item-category parameters 

generated were sequentially ordered, although this is not required for the GPC model. 

)2.0,5.0(−N

)2.0,5.0(N )2.0,5.1(

Dichotomous and graded response data.  A dichotomous item response, U , for a DS 

item associated with a sampled examinee was generated by comparing a value of the uniform 

random number, 

ij

R , in the range (0, 1) to the population value of the correct response 

probability, , by the following rule: if RijP ijP≤ , then U  = 1; otherwise U  = 0. Similarly, a 

polytomous item response, U , for a PS item was generated by the following rule: for 

, if 

ij ij

ijk

ijkP5,,2,1=k k RijP ≤<− )1( , then U  = ijk 1−k , where 00 =ijP  and ∑ijGP
=

G

k ijkP
1

= .  
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Computer Software for Scale Linking Methods 

A computer program was written to implement the four scale linking methods for mixed-

format tests. For the characteristic curve methods, the computer program employed the routines 

described in Dennis and Schnabel (1996) to find values of the slope and intercept that minimize 

the criterion functions for each of the Haebara and Stocking-Lord methods. The item parameter 

estimates from MULTILOG and PARSCALE served as input data to the computer program. 

(The computer program is available from the authors.) 

Evaluation Criteria 

In each condition, there were 100 sets of item parameter estimates for each of the old and 

new forms (i.e., 100 replications). It is expected that in each of the 100 replications the item 

parameter estimates for the new form should be on the same scale as the population item 

parameters after transformation. To evaluate the performance of the four linking methods, two 

evaluation criteria—scale linking coefficient (SLC) and category response curve (CRC)—were 

used. 

The SLC criterion is based on the difference between the estimated and true linking 

coefficients. Thus, the estimates of A and B, denoted A  and ˆ B̂ , are evaluated against their 

respective true values in each condition. Recall that A = 1 and B = 0 for the equivalent groups 

linking and A = 1 and B = 1 for the nonequivalent groups linking. The difference between the 

estimated and true values for each of A and B is quantified using the mean squared error (MSE), 

which can be decomposed into the squared bias and variance over 100 replications, as follows: 
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where  
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The CRC criterion is based on the difference between the estimated and true category 

response curves. Since the focus of this paper is to evaluate how well the new form item 

parameter estimates are put on the old scale, only the new form items are used in this criterion. 

The CRC criterion for item j  with  categories (either a DS item or a PS item) is jK
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where )( OjkP θ  is the category response function calculated with the population item parameters 

for category k  of item j  expressed on the old scale, ˆ (jkr OP )θ  is calculated with the transformed 

item parameter estimates for the item from replication r , and )( Oθψ  is the density of a standard 

normal distribution. Equation 31 can be viewed as an adapted version of the criterion employed 

in Hanson and Béguin (2002) and expresses the average of the MSEs over categories of the 

difference between the estimated and true category response curves for item j . The quantity in 

Equation 31 is simply called the MSE below unless otherwise noted. The MSE in Equation 31 

can be written as 
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The first term on the right side of Equation 32 is the squared bias, and the second term is  

the variance. To numerically calculate the integral involved in Equation 32, the  

Gauss-Hermite quadrature was used because the integrand incorporates a normal density. To 

obtain results with a high precision, 100 quadrature points and their weights were used. Then, 

average values of the squared bias, variance, and MSE over all new form items were computed 

in each condition. 

 Results 

Appendices A and B present the command files used for simultaneous calibration across 

formats with MULTILOG and PARSCALE, respectively. Using 200 for the maximum number 

of EM cycles, the two programs converged in all simulation conditions.  

Values of the squared bias and MSE for the SLC criterion are presented in Figures 1 

through 4. The original values were too small and thus multiplied by 1,000 for ease of 

presentation. In each figure there are eight plots arranged in two columns. The plots in the two 

columns give the results for sample sizes of 3,000 and 500, respectively. In each plot, there are 

three line charts for the three test types (10/10, 20/5, and 30/2), and in each line chart results are 

compared among the three linking types (labeled SI, DS, and PS). Note that to make a clearer 

comparison among conditions, each plot employs its unique scale for the vertical axis. 

Figures 5 through 8 present values of the average squared bias and MSE for the CRC 

criterion. The values were again multiplied by 1,000, and in each figure four plots are arranged 

in two columns. Note again that each plot employs its unique scale for the vertical axis. In 

Figures 5 and 6 for the linking with equivalent groups, the CRC criterion results without 

performing any scale linking are plotted as the “No Scaling” line.  

In what follows, the results shown in the figures are described in detail. This paragraph 

summarizes some pronounced results from comparing among the scale linking methods 
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regardless of the factors investigated, and the following sections describe results by factor 

investigated. With a few exceptions, for both the SLC and CRC criteria, the characteristic curve 

methods had lower MSE than the moment methods, and the Haebara method usually had the 

lowest MSE among the scale linking methods. The lower MSE for the Haebara and Stocking-

Lord methods was due primarily to the lower variance, as found in Hanson and Béguin (2002). 

In the equivalent groups linking condition, in most cases the no scaling method led to less MSE 

than the scale linking methods. One exception is the simultaneous linking condition with the 

20/5 and 30/2 types, where the characteristic curve methods led to slightly less MSE than the no 

scaling method. 

Equivalent versus Nonequivalent Groups 

Focusing on the SLC criterion, the values of the squared bias for each of the slope and 

intercept were very small for the linking conditions of both the equivalent and nonequivalent 

groups, although there was some variation across the four scale linking methods. This indicates 

that the four scale linking methods were properly extended to mixed-format tests. Overall, the 

values of the squared bias and MSE for the slope and intercept were smaller for the linking with 

equivalent groups than those for the linking with nonequivalent groups, but it was difficult to 

find a regular pattern in the difference of magnitude. 

The results for the CRC criterion were similar to those for the SLC criterion. The 

nonequivalent groups linking resulted in higher average squared bias and MSE than the 

equivalent groups linking. 

Sample Size 

For both the SLC and CRC criteria, the MSE values were smaller when the sample size 

was larger. Some similar results were found for the squared bias. 
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Test Types and Linking Types 

The results for the SLC criterion are given first. Focusing on the linking through single-

format items only conditions, the MSE values, as expected, tended to decrease as the number of 

single format items increased. This tendency was more pronounced for the slope than for the 

intercept. For example, in the linking through DS items only condition, in most cases the 10/10 

type had the greatest MSE values and the 30/2 type the smallest. In addition, the variation in 

MSE among the linking methods decreased as the number of single format items increased. 

Ignoring the mean/mean method for the 30/2 type, the linking through PS items only condition 

tended to show smaller variation in MSE among the linking methods than the other linking 

conditions did. When it comes to the Haebara and Stocking-Lord methods, with a few exceptions, 

the MSE was less in the simultaneous linking condition than in the linking through single-format 

items only conditions. This result is reasonable because more anchor items were used for 

simultaneous linking. However, there seemed to be a small difference in MSE between the 

simultaneous linking and linking through “dominant” items conditions. For example, the PS 

items were dominant for the 10/10 type and thus the MSE was slightly less in the simultaneous 

linking condition than in the linking PS items only condition. 

To compare the three test types using the CRC criterion, it should be noted that the 

variance of the CRC criterion for an item was relatively larger for the DS items than for the PS 

items (the results are not presented in the figures). This result might be expected because the     

5-category PS items, on average, have less spread across the category response curves than the 

DS items. Therefore, in the simultaneous linking condition, the average MSE tended to be larger 

when the number of the DS items was larger, mainly due to the increased average variance. 

Specific results for the CRC criterion are given below. 

Regardless of the linking types, the values of the squared bias for the 30/2 type tended to 

be greater than that for the 10/10 and 20/5 types, which seemed related to the parametric 

characteristics of the items. Regardless of the test types, with very few exceptions, the 
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simultaneous linking condition led to smaller MSE values than the linking through single-format 

items only conditions, as for the SLC criterion. In the linking through single-format items only 

conditions, the variation in MSE among the linking methods decreased as the number of single 

format items increased, as for the SLC criterion. Under the condition of linking through PS items 

only with the 30/2 type, the average MSE of the mean/mean method was always highest among 

the linking methods. This is related to the fact that only two discrimination estimates from two 

PS items are involved in estimating the slope of the new-to-old transformation in the mean/mean 

method; thus, the estimates could be unstable. 

From the comparison by test type between the linking through DS items only and linking 

through PS items only conditions, the linking through “dominant” items condition led to lower 

MSE and less variation in MSE among the linking methods. For example, the PS items were 

dominant for the 10/10 type and thus the linking through PS items only condition had smaller 

MSE values and less variation in MSE among the linking methods than the linking through DS 

items only condition. For the 20/5 type, although either DS or PS items could be viewed as the 

dominant type for the moment methods, the linking through PS items only condition led to lower 

MSE and less variation in MSE among linking methods than the linking through DS items only 

condition. This seems to be partly because parameters of the PS items were recovered better than 

those of the DS items. One noteworthy point is that there was a small difference in MSE between 

the simultaneous linking and linking through a dominant item type conditions, at least in the 

characteristic curve methods. 

MULTILOG versus PARSCALE 

In general, MULTILOG and PARSCALE tended to perform similarly, although some 

differences in MSE occurred under certain conditions. This tendency was more pronounced for 

the characteristic curve methods than for the moment methods. 
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Summary and Discussion 

The primary purpose of this paper was to extend “traditional” scale linking methods—

more specifically, item parameter scaling methods—to mixed-format tests. For this purpose, this 

paper presented general versions of the following four scale linking methods extended to the 

mixed format tests: the mean/mean, mean/sigma, Haebara, and Stocking-Lord methods. This 

paper also investigated the performance of each linking method under several simulation 

conditions. Five factors were considered for simulation, leading to 72 conditions under each of 

which the four generalized linking methods were compared. 

As with any other simulation study, the findings in this study have some limitations 

because of the unique design for simulation and the characteristics of the evaluation criteria 

employed. Therefore, caution should be exercised in drawing conclusions or overgeneralizing 

the findings to broader situations. In particular, the population item parameters were generated 

assuming statistical distributions rather than being based on real data. Although most of the 

generated dichotomous and polytomous items appeared to be “good” items in terms of 

discrimination and difficulty, the reality of the three test types used in simulation might be 

questionable. In addition, test data were simulated in an ideal situation where sampling error was 

well controlled and the model fit held. A partial justification for this ideal situation, however, is 

that ideally simulated situations should be preferred over real situations to show that the 

theoretical extension has been made properly. If the four linking methods are applied to more 

realistic situations, perhaps further distinctions could be found. 

Based on the results from the simulation study, all the extended linking methods appeared 

to work properly. As the sample size became larger, the linking error decreased. Similarly, as the 

number of common items of a single format increased, the linking error tended to decrease. In 

addition, the linking error was less in the equivalent groups linking condition than it was in the 

nonequivalent groups linking condition. In general, MULTILOG and PARSCALE tended to 

perform alike. In the equivalent groups linking condition, for the 10/10 type conducting scale 
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linking through linking methods resulted in larger linking error than no scaling. However, for the 

20/5 and 30/2 types, the linking error for the no scaling method tended to be greater than that for 

the Haebara and Stocking-Lord methods but less than that for the mean/mean and mean/sigma 

methods. 

With a few exceptions, the characteristic curve methods showed lower linking error than 

the moment methods, as found in Hanson and Béguin (2002). The Haebara method usually had 

the lowest linking error among the four linking methods. These results suggest that the 

characteristic curve methods are preferable to the moment methods. 

With a very few exceptions, simultaneous linking (using both dichotomous and 

polytomous items) yielded more accurate results than linking through a single item type only, 

regardless of the test types. In the comparison between linking through dichotomous items only 

and linking through polytomous items only, linking through “dominant” types of items led to 

lower error and less variation in MSE among the linking methods. More important, there was a 

small difference in linking accuracy between simultaneous linking and linking through dominant 

item types. This implies that if practical situations do not permit the use of simultaneous linking, 

one may choose to use linking through the dominant item type after carefully considering both 

the number of response categories and the stability of parameter estimates of the item type. 

The three types of mixed-format tests considered in this paper used only two distinct IRT 

models—the three-parameter logistic and generalized partial credit models. Other types of 

unidimensional IRT models, such as the graded response, nominal response, or multiple-choice 

model, could be considered as suitable IRT models for the subtests of the mixed-format tests. 

Consider a situation where the nominal response or multiple-choice model is used to analyze a 

set of polytomous items, say having four or five response categories. Also suppose that the 

constraints given in Equation 6 or 8 are imposed on the parameters for model identification, as is 

often the case. In such an event, the three linking methods other than the Haebara method are not 

likely to handle the nominal response or multiple-choice model properly, for different reasons, as 

follows. 
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The moment methods seem ineffective at performing scale linking because of the zero 

sums of a-parameter estimates as well as the instability of (reparameterized) b-parameter 

estimates. Actually, in a simulation study conducted independently of the present study, the 

moment methods did not work at all under the nominal response model with the constraints. The 

Stocking-Lord method also has a limitation in that it cannot incorporate the response categories 

from the nominal response or multiple-choice model into the criterion function unless a proper 

scoring function is assigned to the categories. By contrast, the Haebara method can handle any 

mixture of IRT models without difficulty. In fact, the Haebara method takes full advantage of the 

invariance property in IRT that item characteristic curves are invariant from group to group 

except a linear difference between proficiency scales (Lord, 1980). Fortunately, the superiority 

of the Haebara method has been verified in several other studies (Hanson & Béguin, 2002; Kim 

& Kolen, 2004; Kim & Song, 2004). 

The characteristics and behavior of the four linking methods extended to mixed-format 

tests need to be further examined with different simulation conditions or in real situations. There 

are two other important research questions: (1) How do the linking methods following separate 

calibration perform in situations where test data do not fit the models and/or the assumptions of 

the IRT models involved in a mixed-format test fail to hold? (2) With mixed-format tests, how 

does the performance of the linking methods following separate calibration compare to the 

performance of concurrent calibration, which does not require linking coefficients? Further 

investigation is needed to answer these questions. 
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Appendix A 

This appendix gives the MULTILOG command files used for the 10/10 type with a 

sample size of 3000. When the other test types and the sample size of 500 are used, the keywords, 

“NI” and “NE” in the command “PRO” should be properly given their values according to the 

number of items and the number of examinees, respectively. In addition, a series of 

alphanumeric codes after the command “END” should also be specified correctly in a given 

condition. 

Simultaneous Calibration with Both DS and PS Items (MULTILOG) 
>PRO RA, IN, NI=20, NG=1, NE=3000, DATA=‘data filename’; 
>TES IT=(1(1)10), L3; 
>TES IT=(11(1)20), NO, NC=(5(0)10), HI=(5(0)10); 
>PRI IT=(1(1)10), AJ PA=(1.7, 1.0); 
>PRI IT=(1(1)10), CJ PA=(-1.4, 1.0); 
>TMA IT=(11(1)20), AK, POLY; 
>TMA IT=(11(1)20), CK, TRIA; 
>FIX IT=(11(1)20), AK=(2,3,4), VAL=0.0; 
>TGR NU=40, 
QP=(-4.0000, -3.7950, -3.5900, -3.3850, -3.1790, 
    -2.9740, -2.7690, -2.5640, -2.3590, -2.1540, 
    -1.9490, -1.7440, -1.5380, -1.3330, -1.1280, 
    -0.9231, -0.7179, -0.5128, -0.3077, -0.1026, 
     0.1026,  0.3077,  0.5128,  0.7179,  0.9231, 
     1.1280,  1.3330,  1.5380,  1.7440,  1.9490, 
     2.1540,  2.3590,  2.5640,  2.7690,  2.9740, 
     3.1790,  3.3850,  3.5900,  3.7950,  4.0000); 
>SAV; 
>EST NC=200, IT=10; 
>END ; 
5 
01234 
11111111111111111111 
22222222222222222222 
00000000003333333333 
00000000004444444444 
00000000005555555555 
(20A1) 
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Appendix B 

This appendix gives the PARSCALE command files used for the 10/10 type with a 

sample size of 3000. When the other test types are used, the keywords, “NTOTAL” and 

“LENGTH” in the command “INPUT”, the keyword “NBLOCK” in the command “TEST”, and 

the keyword “REP” in the command “BLOCK” should be properly given their values according 

to the number of items. The FORTRAN variable format statements should also be specified 

properly according to the structure of item response data. 

Simultaneous Calibration with Both DS and PS Items (PARSCALE) 
>COMMENT; 
>FILE   DFNAME=‘data filename’, SAVE; 
>SAVE   PARM=‘parameter filename’; 
>INPUT  NIDW=4, NTOTAL=20, NTEST=1, LENGTH=20, NFMT=1; 
(4A1,T1,20A1) 
>TEST   TNAME=MIXTEST, ITEM=(1(1)20), NBLOCK=20; 
>BLOCK  BNAME=DSITEMS, NITEMS=1, NCAT=2, 
        ORI=(0,1), MOD=(1,2), GPARM=0.2, GUESS=(2,EST), REP=10; 
>BLOCK  BNAME=PSITEMS, NITEMS=1, NCAT=5, 
        ORI=(0,1,2,3,4), MOD=(1,2,3,4,5), REP=10; 
>CALIB  PAR, LOG, SCALE=1.7, NQPTS=40, ESTORDER, 
        CYCLES=(200,10,10,10,1,1), NEWTON=5, SPRI, GPRI, PRI; 
>PRIORS SSI=(0.6(0)20); 
>SCORE NOSCORE; 
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TABLE 1 

Item Parameters for Dichotomous and Polytomous Items Used for Simulations 
 

Dichotomous Parameters Types of test 
 Items a  b  c  10/10 20/5 30/2 

1 1.150 0.661 0.216 x x x 
2 1.452 -0.012 0.096 x x x 
3 0.819 0.629 0.154 x x x 
4 1.092 0.008 0.161 x x x 
5 0.844 -1.632 0.249 x x x 
6 1.273 -0.964 0.183 x x x 
7 0.839 -0.105 0.202 x x x 
8 1.130 1.330 0.257 x x x 
9 0.896 0.264 0.186 x x x 

10 1.042 0.814 0.253 x x x 
11 0.915 -1.492 0.082  x x 
12 0.857 1.130 0.276  x x 
13 0.778 1.725 0.114  x x 
14 1.260 0.052 0.162  x x 
15 1.312 0.983 0.232  x x 
16 0.951 -1.410 0.145  x x 
17 1.190 1.071 0.214  x x 
18 1.222 0.837 0.164  x x 
19 1.194 1.492 0.229  x x 
20 0.678 0.103 0.218  x x 
21 0.885 -1.910 0.236   x 
22 1.212 0.433 0.218   x 
23 1.101 -0.143 0.137   x 
24 0.804 0.931 0.161   x 
25 0.882 1.420 0.141   x 
26 1.016 0.701 0.137   x 
27 0.932 0.928 0.135   x 
28 0.776 -1.572 0.255   x 
29 1.022 -0.646 0.073   x 
30 1.448 -1.051 0.097   x 

 Polytomous  Parameters Types of test 

 Items a  2b  3b  4b  5b  10/10 20/5 30/2 
1 0.972 -1.442 -0.321 0.506 1.552 x x x 
2 1.091 -1.567 -0.512 0.602 1.430 x x x 
3 0.954 -1.420 -0.579 0.385 1.802 x x  
4 1.201 -1.523 -0.365 0.365 1.332 x x  
5 0.874 -1.745 -0.447 0.694 1.173 x x  
6 1.120 -1.680 -0.557 0.628 1.474 x   
7 1.076 -1.302 -0.446 0.365 1.654 x   
8 0.871 -1.171 -0.249 0.523 1.281 x   
9 1.065 -1.862 -0.135 0.187 1.503 x   

10 1.090 -1.523 -0.754 0.622 1.732 x   

Note: “x” indicates items that are assigned to the type. 
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   FIGURE 1 . Squared Bias and MSE for Scale Linking Coefficient (SLC) Criterion
       Simulated with Equivalent Groups, Analyzed with MULTILOG
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   FIGURE 2 . Squared Bias and MSE for Scale Linking Coefficient (SLC) Criterion
       Simulated with Equivalent Groups, Analyzed with PARSCALE
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   FIGURE 3 . Squared Bias and MSE for Scale Linking Coefficient (SLC) Criterion
       Simulated with Nonequivalent Groups, Analyzed with MULTILOG
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   FIGURE 4 . Squared Bias and MSE for Scale Linking Coefficient (SLC) Criterion
       Simulated with Nonequivalent Groups, Analyzed with PARSCALE
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   FIGURE 5 . Squared Bias and MSE for Category Response Curve (CRC) Criterion
       Simulated with Equivalent Groups, Analyzed with MULTILOG
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   FIGURE 6 . Squared Bias and MSE for Category Response Curve (CRC) Criterion
       Simulated with Equivalent Groups, Analyzed with PARSCALE
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   FIGURE 7 . Squared Bias and MSE for Category Response Curve (CRC) Criterion
       Simulated with Nonequivalent Groups, Analyzed with MULTILOG

   

PS: Linking through PS Items Only
SI: Simultaneous Linking

           3000 Sample Size 500 Sample Size

DS: Linking through DS Items Only

Squared Bias

Mean Squared Error

Mean/Mean
Mean/Sigma
Haebara
Stocking-Lord

10/10             20/5              30/2

0.00

0.01

0.02

0.03

0.04

0.05

DS PS SI DS PS SI DS PS SI

Sq
ua

re
d 

B
ia

s (
x1

00
0)

10/10                20/5                30/2

0.0

0.2

0.4

0.6

0.8

DS PS SI DS PS SI DS PS SI

M
SE

 (x
10

00
)

10/10             20/5              30/2

0.00

0.05

0.10

0.15

0.20

DS PS SI DS PS SI DS PS SI

Sq
ua

re
d 

B
ia

s (
x1

00
0)

10/10                20/5                30/2

0.0

1.0

2.0

3.0

DS PS SI DS PS SI DS PS SI

M
SE

 (x
10

00
)



 43

   FIGURE 8 . Squared Bias and MSE for Category Response Curve (CRC) Criterion
       Simulated with Nonequivalent Groups, Analyzed with PARSCALE
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